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The Ekman boundary layer scalings associated with small oscillatory flows in a rapidly 
rotating system are well known to break down at the critical latitudes. The effect of 
these anomalous boundary regions on the interior flow has long been an issue of some 
concern. We argue, using analytical results derived in a model problem based on 
Stewartson’s (1957) split-disk configuration, that these boundary regions spawn 
internal shear layers. These shear layers have their natural length scale of Ell3 and 
carry velocities only O(E116) smaller than the Rossby number - where E is the Ekman 
number-if the boundary is concave away from the fluid at the critical latitude. 
Otherwise, only a weaker shear layer is produced of length scale containing 
velocities of O(E3/10) smaller than the Rossby number rather than the usual O(E112) 
value for viscous flows in the interior. We show how these layers can carry angular 
momentum by themselves or more significantly in combination with the interior 
inviscid flow, so as to influence the mean flow at leading order. These conclusions are 
then discussed in the context of a precessing oblate spheroid of fluid for which detailed 
experimental observations are available. 

1. Introduction 
In the study of rapidly rotating viscous fluids, it has long become standard to assume 

that the effects of viscosity are largely confined to Ekman boundary layers, and that the 
solution both in the interior and in these boundary layers may be expanded in powers 
of EliZ (where E is the Ekman number defined below). As an exception to this, steady 
flows which additionally possess internal shear layers aligned with the axis of rotation 
have received considerable attention following the initial work by Morrison & Morgan 
(1956), Proudman (1956), and Stewartson (1957, 1966). Nestled layers of Ell3, Ell4 and 
even E2/7 (Stewartson 1966) can be present to transport mass between the Ekman layers 
and resolve internal velocity discontinuities forced by the boundary conditions. 

A similar but far less studied situation arises when the flow deviates slightly from its 
uniform rotation with an oscillation frequency h less than twice the basic rotation rate 
(- 2 < h < 2). The relevant linearized inviscid equations are then hyperbolic and 
discontinuities may propagate without attenuation along the characteristic cones, 

hZ 
= constant, 

(4 - h2)1’2 
SS 

where s is the cylindrical radius and z the axial coordinate, throughout the fluid. These 
discontinuities are naturally smoothed out in the presence of viscosity by internal shear 
layers established along the characteristic surfaces. Gortler (1944, 1957) and Oser 
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(1958) have observed these characteristic surfaces in a rotating suspension of 
aluminium powder, perturbed by an axially oscillating disk (see Greenspan 1968, figure 
1.3 and $4.4 for a summary of the accompanying unbounded analysis by Morrison & 
Morgan 1956, Oser 1957 and Reynolds 1962a, b). Wood (1965, 1966) discussed the 
possibility of shear layers emanating out of the corner regions in his consideration of 
perturbations to a rotating cylinder of fluid. These were later experimentally observed 
by McEwan (1970). In a little known paper, Walton (1975~) considered the oscillatory 
analogue of Stewartson's (1957) steady split-disk problem, demonstrating that 
unsteady shear layers of thickness could be spawned by a 
discontinuity in the (viscous) boundary conditions. This work also served to emphasize 
the different wave-like natures of steady and oscillatory layers, with the former 
analogous to localized standing waves and the latter resembling propagating waves. 

An outstanding issue in rotating fluids has then been whether the well-documented 
critical regions in oscillatory Ekman boundary layers may give rise to such shear layers 
penetrating into the interior (e.g. see Bondi & Lyttleton 1953; Greenspan 1968, p. 62; 
Vanyo et al. 1995). These critical regions, or boundary layer 'eruptions' as Bondi & 
Lyttleton christened them, represent a local breakdown in the Ekman layer scalings for 
the boundary layer associated with small inertial oscillations (Greenspan 1964, 1965, 
1968) and occur at the critical latitude at which 

and exceptionally 

2n.k = A, (1.2) 
where n is the outward normal and k the non-dimensionalized angular velocity of the 
container. At this latitude incoming energy carried by the inertial waves is reflected 
along the boundary instead of back into the interior (Phillips 1963; Greenspan 1968, 
p. 191). The effect is essentially inviscid and manifested in the structure of the inertial 
waves (Wood 1977, 1981 ; Kerswell 1994). 

Roberts & Stewartson (1963) showed how the boundary layer may be rescaled at the 
critical latitudes to give an increased thickness of O(E215) over a region of extent 
O(E'/5) t .  This tended to suggest that the readjustment at the critical latitudes was 
localized and unintrusive into the interior. Furthermore, using these scalings, the 
contribution of the critical latitude regions to the viscous (complex) frequency 
correction experienced by the inertial wave was found to be negligible compared to that 
from the rest of the Ekman layer -experimental and numerical evidence appears to 
support this conclusion (Greenspan 1968, p. 66; Kerswell & Barenghi 1995; 
Hollerbach & Kerswell 1995). As a result, these critical areas have generally been 
considered dynamically unimportant. A notable exception to this was the work of 
Busse (1968) which addressed the mean flow generated within a precessing oblate 
spheroid. By retaining the critical latitude singularity in the leading boundary layer 
solution, he found that the nonlinearity in the boundary layer could drive a shear layer 
in the mean flow at the critical radius. Agreement with experiment appeared good 
(Malkus 1968, figure 3), suggesting that the critical regions clearly had an important 
effect on the interior mean flow. 

With this in mind, it is the purpose of this paper to explore the direct effect of the 
critical latitude regions in the boundary layer on the interior flow. We argue that (i) 
the critical latitudes of an oscillatory Ekman layer do significantly affect the interior by 
spawning shear layers which penetrate into the bulk of the fluid and (ii) that these 
internal shear layers can transport angular momentum through the fluid either by 

t If the tangential derivatives cannot be rescaled -when the extent of the boundary inclined at the 
critical angle is finite - Cans (1983) found that rescaled layers of thickness O ( P 3 )  and O(E1l4) could 
exist. 
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themselves or in concert with the prevailing inviscid interior flow. In other words, these 
boundary layer ‘eruptions’ can influence the mean flow across the entire bulk of the 
fluid through the obliquely inclined shear layers so spawned. These conclusions are 
based upon the realization that a boundary layer eruption effectively represents a 
region of rapid variation in the boundary conditions felt by the interior flow. As such 
it  may be modelled by studying the effect of a localized signal of small wavelength on 
the viscous boundary conditions for a system which can be solved exactly- 
Stewartson’s coaxial infinite disk configuration. Here exact solutions to the linearized 
equations of motion based upon a uniformly rotating state are formally available in 
terms of Hankel Transforms. These can then be evaluated asymptotically in the limit 
of small Ekman number to reveal the important features of the fluid response. 

For clarity, we actually present the results summarized above in reverse order. It is 
first established that oscillatory shear layers produced by a discontinuity in the 
boundary conditions can carry angular momentum. Then, having developed the 
problem to consider shear layers spawned in more general circumstances, we argue that 
their total effect on the interior is little different from the discontinuous case. The 
detailed plan of the paper is as follows. Section 2 introduces the infinite coaxial split- 
disk system used previously by Stewartson (1957) and Walton ( 1 9 7 5 ~ )  to study the 
effect of small discontinuities in the boundary conditions on the uniformly rotating 
interior. To extend these previous axisymmetric studies, we show how the 
Navier-Stokes equation admits separable asymmetric solutions in this cylindrical 
geometry. In $3, we impose a small asymmetric oscillatory differential motion of the 
inner disk relative to the outer disk and essentially recover the asymmetric analogue of 
Walton’s oscillatory internal shear layer solution. This solution is then used in $4 to 
establish that these shear layers exert a torque on the interior and hence can carry 
angular momentum away from the discontinuity. Although this is a somewhat 
idealized calculation, the implication is clear: these shear layers present a new source 
of Reynolds stresses whether viewed purely as a self-interaction or in combination with 
the leading interior inviscid flow. In the latter case, these stresses certainly would seem 
to be influential in determining the leading-order mean flow. 

In $ 5 ,  we consider the continuous analogue of the split-disk problem in which the 
adjustment in motion between the inner and outer disks is now smoothly achieved over 
a small length scale 6. This is a crude model of the critical region of a boundary layer 
in the sense that this area of readjustment represents a localized signal of some length 
scale S in the boundary layer. At the boundary layer eruption, two characteristic 
directions are generally available to accommodate a shear layer: one directed back into 
the fluid and the other tangential to the boundary (with both inclined at 
tan-l A/(4-A2)l12 to the rotation axis). For the non-tangential shear layer, the 
appropriate length scale would appear to be i.e. the shear layer sees the whole 
lateral extent of the eruption. On the other hand, the tangential shear layer sees only 
the boundary layer thickness change of O(E215). The picture which emerges from the 
model is that any small-scale variation in the boundary layer is sufficient to generate 
internal shear layers. The strength of these shear layers is found to scale inversely with 
their lateral extent 6, until the natural scaling found by Walton is reached at S - Ell3. 
In this way, their cumulative effect on the interior is equivalent to the discontinuous or 
6 << case. The conclusions drawn in the latter idealized case in $4 are then more 
generally applicable. 

The conclusions of the paper are brought together in $6 along with a brief discussion 
of their implications for a rotating system of current interest: the flow within a 
precessing oblate spheroid. Finally, an Appendix discusses the special resonant case of 
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the oscillating disk problem in which the frequency of oscillation is exactly twice the 
rotation rate. In this limiting situation, the whole boundary is at the critical latitude. 

2. The coaxial disk system 
The coaxial disk system consists of an incompressible fluid contained between two 

infinite horizontal disks at z = t- d corotating with an angular velocity k perpendicular 
to their plane. By dividing these disks into an inner and outer disk and imparting a 
small differential motion between the two, both Stewartson (1957) and Walton (1975~) 
have been able to study the effect of discontinuities in the boundary conditions on the 
uniformly rotating interior. In particular, Walton considered one of the outer disks to 
have a small additional oscillatory angular velocity c k  exp (iht) and concentrated on 
understanding the intricate pattern of reflecting internal shear layers produced. The 
attraction of the unbounded disk configuration is that the Navier-Stokes equation is 
separable in cylindrical polar coordinates (s, 4 , ~ ) .  Working in Cartesian coordinates 
and using the inner disk radius and basic rotation rate to non-dimensionalize the 
system, the linearized momentum equation describing small incompressible motions 
superimposed upon a uniformly rotating underlying state, 

(2.1) 
au 
- + 2k x u + V p  = EV’u, 
at 

can be rewritten Vau = 0 as the three scalar equations 

These can then be simplified to 

where 

9 [ p ]  = 9[uz] = 0, --E7 + 4  9[u,+iuy] = 0, 
{(:l } 

Moving to cylindrical polar coordinates, 

u ,k iuy  = [U*iV]eki@, u, = W (2.7) 

and separating variables 

u(x, t )  = [u(x, t )  Ŝ  + u(x, t )  4 + w(x, t )  i J = [u(s> Ŝ  + V(S)  6 + W(S) i ]  ei(At+m#+az) , (2.8) 

we find the solutions 

w = Jm(ks), (2.10) 
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provided that [E(a2 - k2)  - ih]' (a2 - k2)  + 4a2 = 0. (2.11) 

The general solution is then a linear superposition of these 

ih - E(ar - k2)  m 3  ( f %) A,(k) J,,,(ks) cosh (a,  z )  ei(A\t+md), lom dk i(h 2) - E(ar - k2)  
u k i u = s  C C 

m=-m 1=1 

(2.12) 

w = c C C dk A , @ )  Jm(ks) sinh (a, z )  ei(At+m$), (2.13) 

where the subscript 1 runs over the three roots of (2.1 1) for each value of k .  For 
convenience and without loss of generality, we have assumed symmetry about the mid- 
plane ; in contrast to Stewartson's steady situation there is no fundamental difference 
between symmetric and antisymmetric solutions as the discontinuities vertically 
displaced in the upper and lower disks cannot communicate with each other. 

m=-m1=1 OC. 3s1 0 

3. Discontinuous boundary conditions 
The main motivation behind this study is to consider the Ekman boundary layers 

associated with asymmetric inertial waves : specifically, the m = 1 case is of particular 
relevance to the precessing flows discussed in 9 6 .  As a result we will consider the inner 
disk to possess a small differential asymmetric motion relative to the outer disk. In 
practice, this could be achieved by arranging for a sector of the inner disk to rotate 
differentially compared to the rest of the system, thereby setting up discontinuities in 
the boundary conditions with respect to both # and s. The discontinuities in # may be 
Fourier decomposed into a full spectrum of azimuthal wavenumbers, each of which 
can then be considered separately due to the linearity of the system. By focusing on one 
such azimuthal mode m,  we can then concentrate upon the effect of an asymmetric 
boundary condition discontinuity in s on the interior. 

For our purpose, which is to discuss interior velocity fields larger than O(eEli2), the 
exact s-dependence of the boundary conditions away from the discontinuity is in fact 
irrelevant providing that their scale of variation remains O( 1). As a result, we are free 
to choose this to facilitate the analysis as Stewartson (1957) did. Furthermore, we 
impose u+iu = w = 0 on the differentially rotating inner disk rather than the more 
natural u = w = 0 purely to exploit an exact inverse Hankel transform. The following 
analysis is insensitive to the imposed phase or amplitude relationship between u and u 
at the boundary and hence the results obtained below for the former case are then 
entirely representative of those corresponding to the latter. What is important is that 
the boundary conditions can only be viscously transmitted to the interior, i.e. w = 0 on 
the inner disk. With this in mind, we allow the inner disk to possess the rather artificial 
asvmmetric differential motion 

at z = +d relative to the outer disk so that with the identity 

sm-l, 0 < s  < 1 

61; J,(k) J,-,(ks) dk = 1/2, s = 1 I 0, s > l  

(3.2) 
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(Sneddon 1951, p. 51), the boundary conditions then become simply 

(3.3) 
(upper sign) 

- 2iJ,(k) (lower sign), 
(*) A,(k) cosh (al d )  = 

ih - E(a: - k2) 
1=1 ' i(h 2) - ~ ( a :  - k2) al 

3 

2 A ,  sinh (a, d )  = 0. 
1=1 

(3.4) 

Away from the disk surfaces outside the Ekman layers, the only radial wavenumbers 
which contribute in the integrals of (2.12)-(3.4) satisfy k 4 E-'12, i.e. the smallest 
scales which exist in the interior are much larger than Ell2.  This is crucial for making 
progress for then the roots of (2.11) can be identified as follows: 

+ k2 [s] + O(E2 k4). 
i(h k 2) 

The special resonant case h = 2 is considered in the Appendix. The roots a2 and a3, and 
hence the coefficients A ,  and A ,  correspond to the Ekman layer solutions which decay 
exponentially into the interior. If we focus our attention on the interior, only the 
solution given by A ,  is important and from the boundary conditions this is 

[i(h - 2)]'12 kJ,(k) 
A, -El" 

2 - h sinh (a, d )  (3.7) 

to leading order, which will prove sufficient. 
At this point we may proceed to evaluate the integrals (2.12) and (2.13) by contour 

integration as Stewartson (1957) originally did for his. More useful, however, is to 
realize that the integrands are only significant a t  large k values. This allows the 
integrand to be treated asymptotically and reveals more readily the individual shear 
layers and their reflections on the disks and in the axis (Walton 1975~).  As 

and defining y = h/(4 - h2)lI2 such that 

16k3 E 
a, = iky+ 5,2+O(k5 E2), 

(4-h 1 
then 

(3.10) 

x {i(g[s- 1, (1 + 2n) d-z] - F[ 1 -s, (1 + 2n) d-z] 

+ F [ s -  1, (1 + 2n) d+z] - F [ l  -s, (1 + 2n) d +  z]) 

+ F[S+ 1, (1 + 2n) d+ z] +F[ -s- I, (1 + 2n) d+z])> ei(At+m$) > (3.11) 

+ (- l ) y F [ S  + 1, (1 + 2n) d-z] + F[ -s-  1, (1 + 2n) d-z] 
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where 
F [ x ,  y]  = exp [ik(x - yy )  - 16k3 Ey/(4 - h2)5/2].  (3.12) 

The shear layer structure of the solution is encapsulated in the functions F [ x ,  y] .  If 
x - y y  is O(l), then even though F is significant to k = O(E-'I3), its rapid oscillation 
ensures that any integral of it remains O(1) and hence u l i u  = O(Eli2). However, in the 
shear layer (inclined at tan-' h/(4 - h2)'I2 to the rotation axis) where x - y y  is O(E1I3), 
there is no such oscillation and u + i v  is then O(E116). It is also clear that the decay in 
the velocity magnitudes away from the shear layers can only be algebraic as Walton 
pointed out. The first four terms represent the original shear layers emanating from 
s = 1, z = l d  (n = 0)  and their subsequent reflections (n =k 0). The last four terms are 
the 'image' shear layers originating from the 'image' points s = - 1, z = +d, and their 
reflections. 

3 17 

4. Angular momentum transfer 
To identify the angular momentum transport of these shear layers through the 

interior, we consider the torque T(s) exerted by the shear layer velocity field through 
its Reynolds stress on a cylinder of radius s. The component tending to despin the 
interior is 

Owing to the azimuthal integration, the product uu is time-averaged and therefore 
components of u and u which are +rc out of phase cannot contribute to the torque. 
Expression (3.11) shows that this is the case to leading order in Ek2. Working to next 
order and away from shear layer intersections, the torque is produced entirely by the 
self-interaction of each shear layer velocity field. We therefore focus upon the angular 
momentum carried by one such shear layer which propagates inwards from the top 
discontinuity. Dropping O( 1) amplitudes and a common phase, 

Then using the real parts only, we have 

d k l d k z ( k ~ + k ~ ) ~ ~ ~ ( ( k l - k z ) [ l  - ~ - y ( d - ~ ) ] >  
T(s) = 4nh2t2E2Jd dz-s ts 1: lom 

(4-h2)3 - 

1 6 E(k: + ki) (d - Z) 
(4 - h 2 ) 5 / 2  

exp [ - 
The change of variables 

allows one integration to be completed immediately : 

< =  k,-k2, 7 = k;+ki 



318 R. R. Kerswell 

Here we label the limits on the z-integration as merely + and - to indicate that the 
integration is taken across the shear layer. Working with the shear layer variables 

1-s-y(d-z) , 7 = E1’36 E1/3 X= 

the despinning torque may be rewritten as 

(4.7) 

The integrand is significant only when X = O(l), that is inside the shear layer, and so 
the E”.X terms may be dropped to leading order. Extending the limits of X to f 00 

with negligible error gives a &-function in 7 for the X-integration and then simply 

We might reasonably have anticipated a despinning torque of O ( 2  E2I3) produced by 
the O(aE1l6) velocity fields u, interacting over the shear layer width O(E1’3).  However, 
the torque is reduced by a further factor of O ( l P 3 )  due to the phase incoherence 
between u and u in the shear layer. Such a torque will only drive an O ( 2  Ell2)  mean flow 
in the interior compared to the O(e2) mean flow produced by nonlinearities in the 
Ekman boundary layer. 

In the full system of which this is just a model, there would of course be the inertial 
wave flow u, present in the interior. This, working in tandem with the internal shear 
layer us, would yield a despinning torque on the interior of 

2n d 

- T - k  = - [ [ s d 4 d z k . r  x (u,~Vuo+u,~Vu,). (4.9) 
J o  J - d  

The second term in the integrand is of O(e x E-lI3 x due to the normal derivative 
of the shear layer velocity. But, rather than driving an O ( C ~ E - ’ / ~ )  mean flow, this 
leading-order effect vanishes under integration across the layer. However, that these 
large localized stresses are possible at all in such a generic way is extremely noteworthy. 
As far as the mean flow is concerned, this leaves both terms of the integrand to give 
an effect of O(c x €Ell6 x = c2E1/’) and hence be capable of driving the usual O(e2) 
mean flow. In contrast to the self-interaction of a shear layer, phase incoherence will 
not reduce this estimate because the shear layer is viscously generated and hence phase- 
lagged to the original inviscid interior flow. 

It is worth emphasizing at this point that there is no net mass transport along the 
shear layer owing to its oscillatory nature. This said, the mass flux is 0(cEl i2)  at a given 
instant in time and hence comparable to the general viscous flows in the interior. 

5. Boundary layer eruptions 
We now generalize the above by smoothing the discontinuity over a length scale 8. 

If the boundary is convex into the fluid at the critical latitude, only one shear layer 
orientation is possible pointed directly back into the fluid. Adopting the scalings 
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of Roberts & Stewartson (1963), this shear layer sees an anomaly region of extent 
O ( E 9  9 O(El’‘). Alternatively, if the boundary is concave into the fluid at the critical 
latitude, an additional shear layer is possible tangential to the boundary. This shear 
layer sees the anomalous boundary layer thickness of O(E2I5) 4 O(E1I3). Ostensibly, 
these appear completely different situations given the natural scalings of the shear 
layers discussed above. However, it is our purpose in this section to demonstrate that 
the shear layer scalings adjust themselves to accommodate any boundary variation 
scale once this exceeds O(E1l3). 

We consider the smoothed analogue of the inner disk moving differentially from the 
outer disk studied in $ 3 .  The small length scale 6 controls the width of our ‘boundary 
layer eruption’ modelled by the boundary conditions 

(5.1) 

at z = f d .  In keeping with our knowledge of the boundary layer eruption, only the 
velocity gradients and not the velocities themselves are rescaled. The analysis presented 
in $ 3  can be reused for 6 + 0 provided that the Hankel transform J, (k)  is replaced by 

= t.[ - i, 1 ,  01 Sm-1__ e-(Y-l)z/Jz dy ei(At+W) 
61t11/2 r 

in (3.3) and (3.7). Then, away from the Ekman boundary layers, the vertical velocity, 
for instance, is 

(5.3) 

The integrand is significant only for x- 1 = O(6) and for large k. Expanding the 
integrand asymptotically as before but this time retaining just the shear layer 
emanating directly out of the region towards the axis, gives 

(5.4) 

Rescaling the inner integral using X6 = x- 1 ,  extending the lower limit to - 00 and 
setting xm-liz z 1 transforms this integral with negligible error into the Fourier 
transform of exp [ - X2] with respect to k6, i.e. 

Hence 

x 1: dkexp [ik[ 1 -s + y(z - d)] -k%Y2/4 - 16k3 E(d-z)/(4 - A2)512]. (5.6) 
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The integrand is then significant up to 

k - O[min(l/G, E-lI3)] % 1, 

and correspondingly within the shear layer 

1 -s+y(z-d) = O[max(6,E1/3)] 

(5.7) 

the vertical velocity will be 

w = O[min (eE1Iz/6, e W 6 ) ]  or O[min (1/6, E-1'3)] % 1 (5.9) 

larger than outside the shear layer. Thus, regardless of the exact small scaling 6, the 
interior feels the presence of the fine boundary layer variation through the production 
of suitably scaled shear layers directed along the characteristic directions. Such 
propagation of a 'signal' in the boundary conditions is, of course, typical of a 
hyperbolic system. 

Thinking specifically in terms of the boundary layer eruptions and taking 6 = Ell5, 

we can expect a shear layer of width O(E1l5) to emerge in which the velocities are 
O(eE3/lo),  that is, O(E-1/5)  larger than in the general interior. If the scale of variation 
is smaller than the Ell3 shear layer formed does not see the fine structure but 
rather only a discontinuity in the boundary layer. This latter result has been assumed 
previously to match Stewartson shear layers to Ekman boundary layers (Greenspan & 
Howard 1963; Jacobs 1964; Stewartson 1966; Moore & Saffman 1969). Therefore, the 
shear layer tangential to the boundary layer eruption sensing only a O(E2/5) thickness 
variation will have the 'maximum' strength of an Ell3 layer, carrying O(eE116) 
velocities. 

The torque exerted on the interior by shear layers of width 6 acting on their own or 
in combination with the leading inviscid solution should be of a similar order to that 
estimated above in 54 for the discontinuous case. In particular, for a shear layer of 
strength O(CE' /~ /S )  and width O(6) interacting with the interior flow of O(e), we could 
reasonably expect a torque of O(e x eE1/'/8 x 6 = C ' E ' ~ ~ )  which is sufficient again to 
drive an O(2) mean flow. As discussed previously, there should not be any loss in order 
due to phase incoherence between the velocity fields as there was in the shear layer self- 
interaction case. This is because the initial conditions for the shear layer originate in 
the viscous boundary layer, where for instance there is certainly no phase coherence 
between the Ekman efflux velocity and the inviscid interior flow. It is also worth re- 
emphasizing that large local stresses of O(ezE1/2 /62)  seem to be available in the shear 
layers but, as argued above, have no significance as far as the mean flow is concerned. 

Furthermore, the torques produced by shear layers originating from boundary layer 
eruptions above and below the equator reinforce each other. The linearization of the 
Navier-Stokes equation ensures that the viscous boundary layer correction, l?,, and 
hence the shear layer velocities us, shares the equatorial symmetry or antisymmetry of 
the inviscid inertial wave u,. The azimuthal component of the Reynolds stresses 
originating from the nonlinear interaction u, - Vu, + u, - Vu, is then symmetric about the 
equator. 

6. Discussion 
In this paper, we have argued that the 'eruptions', generic to the Ekman boundary 

layer associated with any inertial wave, spawn internal shear layers. The presence of 
these internal shear layers threading through the fluid interior appears to challenge the 
usual Eliz  viscous expansion of the velocity field in a wide variety of situations. Rather 
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than the flow domain being divided into a boundary layer region and an interior with 
the flow partitioned into O(e) and O(eE1i2) velocities (e being the Rossby number), 
there is the possibility of intermediate scales both in the shear layers themselves and at 
the junctions of these layers with the Ekman boundary layers. Even leaving aside the 
last possibility, we are forced to contemplate a general expansion of the form 

IL = E[U, + 6, + Ell6 U: + E3/10 U: + E1”(u1 +El )  + O(E1”)] + O(e2) (6.1) 

for the viscous velocity field due to an inertial wave, where velocities with a tilde are 
only significant in the boundary layer, ui is non-zero only in the shear layer originally 
tangential to the boundary layer eruption and u,” is non-zero in the non-tangential 
shear layer directed inwards from the boundary layer eruption. Moreover, locating 
these enlarged viscous velocity fields is in general a non-trivial task. After their 
initiation at the critical latitudes, the shear layers ‘bounce’ around off the boundaries 
always maintaining an inclination of tan-l h/(4 - h2)112 to the rotation axis until they 
eventually dissipate. As a result, their location depends crucially on the global 
geometry of the container. Walton (1975a) talks about an O(E116) total loss of flux 
occurring at each reflection in his model problem. This would suggest that a shear layer 
can survive for at most O(E-1/6) traversals of the interior, bearing in mind the further 
continual viscous attenuation they suffer. 

The new shear layer velocities, uf and u:, in the expansion (6.1) do not seem 
important for calculating the viscous frequency shift for the inertial wave. However, 
they do offer up new possibilities for nonlinear interactions in the interior which, for 
instance, appear to contribute at leading order to the mean flow. This is because the 
magnification factor for the shear layer velocities precisely offsets their localization. We 
have shown how these shear layers can carry angular momentum on their own, but this 
emerges to be secondary to the transport available in combination with the leading 
inviscid flow. 

An experimental configuration which allows the conclusions reached here to be 
directly assessed is the slow precession of a spinning oblate spheroid of fluid. If the 
precession is slow enough, the fluid reacts by tilting its rotation vector away from the 
spheroid’s axis towards the precessional axis (Poincari 1910). In the container’s 
spinning frame, this response is merely the sustenance of a special ‘spinover’ inertial 
wave, which represents a rotation of the fluid about an equatorial axis, at a constant 
amplitude. As this inertial wave is also a nonlinear solution to the Navier-Stokes 
equation for all but the non-slip boundary conditions, any discrepancies between this 
and the observed flow must originate in the Ekman boundary layer necessarily present. 

Busse (1968) has already shown how a shear layer in the mean flow observed by 
Malkus (1968, figure 3) may be generated by nonlinear effects in the Ekman boundary 
layer. Specifically, Busse found that if the critical latitude singularity in the linearized 
Ekman boundary layer were retained, it would drive through the nonlinearity a steady 
mean flow shear layer at the critical radius. However, recent experiments conducted by 
Vanyo et al. (1992, 1995) have highlighted the presence of mean flow shears throughout 
the bulk of the flow. This paper can offer arguments which extend Busse’s work to 
bridge this gap. 

Essentially, we suggest that rather than the boundary layer eruptions having 
influence only locally at the critical radius, they in fact affect the entire flow through 
obliquely inclined oscillatory shear layers. Since the spinover inertial wave has the same 
frequency as the basic spin rate of the container, h = 1, the boundary layer eruptions 
occur at any part of the boundary orientated at 30” to the spin axis. The resultant shear 
layers are then similarly inclined at 30” to the spin axis and therefore penetrate the 
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FIGURE 1 .  A diagram of the viscous response to a spinover velocity field in a spherical shell. The 
magnitude of the velocity field in each domain, normalized by the basic inviscid spinover amplitude, 
is shown in orders of the Ekman number; hence the background velocity field is 0(E1I2) .  Numerical 
calculations (Hollerbach & Kerswell 1995) suggest that the inner-core non-tangential shear layer is 
suppressed; therefore it is only shown dashed. For the spherical case, only the outer weak shear layer 
is present. 0 = tan-' [h / (4-h2)1 /2] .  

entire bulk of the flow. Figure 1 illustrates the situation for a spherical shell where both 
types of shear layer should be present. In fact, an accompanying numerical calculation 
of this situation (Hollerbach & Kerswell 1995) indicates that once a tangential shear 
layer is spawned, the non-tangential shear layer does not appear : presumably, the 
former sufficiently smooths over the eruption to make the latter redundant. 

For the laboratory case of a slightly oblate spheroid, only the non-tangential shear 
layer appears from the outer eruption. This could not be included in Busse's analysis 
but has potentially as much influence on the mean flow as the nonlinear boundary layer 
effects. The selective emanation of the oscillatory shear layer inwards towards the spin 
axis should in itself set up a mean flow shear layer at the critical radius. Outside the 
critical radius, the flow is devoid of any shear layers except perhaps the weakened 
remnant of many reflections. Inside, the newly born shear layer is at the height of its 
strength to interact with the spinover flow field to despin the fluid. Nowhere else is the 
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contrast so stark. Presumably both the shear layer and nonlinear boundary layer effects 
conspire to set up the strongest mean flow shear layer precisely at the critical radius. 
In addition, however, rather than just this one shear layer, we can anticipate that the 
steadily attenuating oscillatory shear layers bouncing around the interior should 
produce weaker shears throughout as seemingly observed by Vanyo et al. (1995). 

Unfortunately, the extra torques available and the resulting driven mean flow cannot 
be quantified without actually knowing the structure of the shear layers which emanate 
from the boundary layer eruptions. It perhaps goes without saying that a resolution of 
the join region where these shear layers emerge from the boundary layer appears well 
beyond reach and with it any appreciation of the exact structure of the shear layers. 
Most notably, Moore & Saffman (1969) attempted to fit a steady Stewartson layer onto 
the Ekman layer encompassing a rising object, but were forced to approach the 
problem indirectly. Here, the problem is more involved still due to the unsteadiness of 
the layer and the structure of the boundary layer eruptions. The balance of physical 
processes which determines the unsteady shear layer is more subtle than that for the 
steady layer. From (2.5) we have 

The steady shear layer follows from the leading balance of the second and fourth terms, 
whereas the unsteady shear layer arises from the third term balancing the residue from 
the oscillatory balance between the first and second. In terms of the characteristic 
variables 

(6.3) 

along a n+ = constant shear layer. The absence of the highest derivative from this 
leading bdance has been noted before (Wood 1966; Walton 1975a, b). If the shear 
layer scales with Ell3, all three terms are comparable. If the shear layer is weaker, only 
the first two balance. 

The conclusions drawn here can to some extent be confirmed through comparison 
with a full numerical solution of the viscous correction to the spinover inertial wave in 
a sphere and spherical shell. This work is described in an accompanying paper 
(Hollerbach & Kerswell 1995). The associated driven mean flow exhibits shear 
throughout the interior as expected. 

Appendix 
In the resonant case h = 2, the roots of (2.11) are 

(A 1) ! a1 = E-114 k1/2 e-h /8  +O(E3/4k512),  

"2 - 
a: = 4iE-1 + 5k2/4 + O(Ek4), 

- E-114 k1/2 e3in/8 + O(E3/4 k5/z), 

where now only 
the boundary conditions (3.3) and (3.4) gives 

is associated with the Ekman boundary layer. Eliminating A ,  from 

(A 2) N _  E 4  J,(k) 
sinh (a,  d )  k[cosh (a ,  d )  sinh (a,  d )  -i sinh (a ,  d )  cosh (a, d ) ]  



cosh (a, z )  sinh (a, d )  - i sinh (a, d )  cosh (a, z )  
cosh (a,  d )  sinh (a,  d )  - i sinh (a, d)  cosh (a, d)  

valid away from the Ekman boundary layer. The integrand is significant only up to 
wavenumbers k - O(E1'2/d2) where d = d-lzl $ E1j2 and hence this solution pos- 
sesses a boundary layer structure of its own with thickness Ell4. Letting x = L ~ E - ' / ~  kl/' 
and taking d 4 1 to simplify the integrand, the solution is 

x [i exp ( - x e-'"/*) - exp ( - x eain18)]. (A 4) 

The magnitude of the velocity field falls off from O(c) inside the Ell4 layer to 

), (A 5)  u - iu - ,(,[E1/2/d2],fl+lm-1I 

which holds for the interior d-lzl - 0(1) as well. 
This confirms the scaling predictions of Gans (1983) who foresaw the possibility of 

an Ell2 layer embedded in an El/' layer for the special resonant case where a plane 
boundary is perpendicular to the rotation axis. Gans found that an Ell3 layer could 
also exist for all other orientations. In effect, the extra Ell4 boundary layer represents 
the limiting case of a horizontal shear layer arising from the boundary discontinuity. 
In contrast, an associated but subtly different problem of a resonantly oscillating, 
infinite disk (Benney 1965; Thornley 1968), or pair of disks (Barrett 1969; Jacobs 
1971), does not contain an Ell4 layer. 
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